If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-26x+50=0
a = 3; b = -26; c = +50;
Δ = b2-4ac
Δ = -262-4·3·50
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{19}}{2*3}=\frac{26-2\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{19}}{2*3}=\frac{26+2\sqrt{19}}{6} $
| 9=3(f+5) | | 95=z20 | | 0.4(x+100)+x=89C | | -2(-4m)-6.4=44.8 | | 2k(k+1)=2k(k+1) | | 4=3m-1 | | 40=6w-2 | | 1+8=x−4 | | -28/w=4 | | -65=5-7x | | 4n+8/3=28 | | 2(u+6)=10 | | 1/2x-4=2-1/3x | | -(y+7)=-1 | | q-5/2=2 | | -4(8-3x)=6x | | 4(v+13)=20 | | 2(d+2)=6 | | 5(m-(2))+36=-4 | | 2x^2+3x+-12=8 | | 10x32x=4 | | 19x-7=183 | | 16-4=n/3 | | x/3-7=5/2 | | -14(2x-5)=630 | | 67=y−37 | | ?x5-28=117 | | 138-2x=108 | | 0=x^2-92x+360 | | x+146=180 | | 12x+8-6x=-70 | | w-18=12 |